Crystal electric field and the ground state properties of heavy fermion \(\text{Ce}_3\text{Ru}_4\text{Sn}_{13} \)

A. Ślebarski,\(^1\) M. Fijałkowski,\(^1\) J. Goraus,\(^1\) L. Kalinowski,\(^1\) and P. Witas\(^1\)

\(^1\)Institute of Physics, University of Silesia, 40-007 Katowice, Poland

We report on the electronic structure, electric transport and basic thermodynamic properties of the skutterudite-related \(\text{Ce}_3\text{Ru}_4\text{Sn}_{13} \) and \(\text{La}_3\text{Ru}_4\text{Sn}_{13} \). X-ray photoelectron spectroscopy (XPS) core level spectra revealed a stable trivalent configuration of the Ce atoms in \(\text{Ce}_3\text{Ru}_4\text{Sn}_{13} \), consistent with magnetic susceptibility data. Magnetic susceptibility and specific heat measurements reveal that the sixfold degenerated multiplet of \(\text{Ce}^{3+} \) ions splits into three doublets, due to the tetragonal Ce point local symmetry in the cubic \(\text{Ce}_3\text{Ru}_4\text{Sn}_{13} \) system. \(\text{Ce}_3\text{Ru}_4\text{Sn}_{13} \) exhibits a large increase in the specific heat, \(C/T \), data due to Kondo effect and strong electron and short-range magnetic correlations, we also suggest significant contribution of the crystal field effect. \(\text{La}_3\text{Ru}_4\text{Sn}_{13} \) is typical obtained as BCS superconductor, however, specific heat and electrical resistivity data show that \(\text{La}_3\text{Ru}_4\text{Sn}_{13} \) also exhibits a second superconducting phase at higher temperatures, which is characteristic of inhomogeneous superconductors.