Spectroscopic studies of the phase transition from the Mott insulator state to the charge ordering state of \(\kappa-(ET)_4[M(CN)_6][N(C_2H_5)_4]\cdot 2H_2O \) (\(M = Co^{III} \) and \(Fe^{III} \)) salts

A. Łapiński,1 R. Świetlik,1 L. Ouahab,2 and S. Golhen2

1 Institute of Molecular Physics, Polish Academy of Sciences,
Smoluchowskiego 17, 60-179 Poznań, Poland

2 Organométalliques: Matériaux et Catalyse UMR 6226
CNRS-UR1 Institut des Sciences Chimiques de Rennes,
Université de Rennes 1, 35042, Rennes Cedex, France

We report detailed IR investigations of the charge ordering (CO) transition at \(T=150 \) K and charge fluctuations in \(\kappa-(ET)_4[M(CN)_6][N(C_2H_5)_4]\cdot 2H_2O \) (\(M = Co^{III} \) and \(Fe^{III} \)). As a consequence of the CO, electronic and vibrational spectra are modified. The most important proof of the CO is the appearance of the electronic band at \(7000 \) cm\(^{-1}\) attributed to charge transfer in \((ET)_2^{2+} \) dimers and also the vibrational band at \(1347 \) cm\(^{-1}\) being the result of coupling of C=C mode of ET with this electronic excitation. Apart from the long-range Coulomb interactions between electrons also the anions can have a significant influence on the formation of the CO state.

This work was supported by the National Science Centre (Decision No. DEC-2012/04/M/ST3/00774).