Magnetic properties of bulk and thin films after Nd$_2$Fe$_{14}$B corrosion action

V. Constantin,1 E.I. Neacșu,1 A.M. Popescu,1 K.I. Yanushkevich,2
A.I. Galyas,2 and O.F. Demidenko2

1“Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy,
Splaiul Independentei 202, Bucharest, Romania
2Scientific-Practical Materials Research Center NAS, P.Broski Str.19, Minsk, Belarus

The corrosion action on the bulk Nd$_2$Fe$_{14}$B and based on it thin films magnets in different corrosion media was studied. The thin Nd-Fe-B layers of $100 \text{ nm} \leq d \leq 1000 \text{ nm}$ were obtained on glass substrate by "flash" method. The structure and microstructure of the thin Nd-Fe-B films and bulk was studied by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In such films the long-range structural order is destroyed. The temperature specific magnetization study before and after corrosion action in the $80 \leq T \leq 800 \text{ K}$ temperature range are carried out by ponderomotive method. It is shown that the magnetization of the layer of $d \geq 1000 \text{ nm}$ thickness is comparable to those for powder samples. From the hysteresis loops the values of the coercive force and magnetic saturation field are determined.