Structure-property relation in granular L_1O-FePt media

S. Wicht,$^1,^2$ V. Neu,1 L. Schultz,$^1,^2$ O. Mosendz,3 V. Mehta,3 S. Jain,3 O. Hellwig,3 D. Weller,3 and B. Rellinghaus3

1IFW Dresden, P.O. Box 260116, D-01171 Dresden, Germany
2University of Technology, D-01062 Dresden, Germany
3HGST, 3403 Yerba Buena Rd, San Jose, CA-95135, USA

Based on their high uniaxial magneto-crystalline anisotropy of $K_U = 6.6\,\text{MJ/m}^3$ granular L_1O-ordered FePt-C films are seen as promising material candidates for future hard disk media. Aberration-corrected high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometry (VSM) are used to correlate the structural and magnetic properties of these films. HRTEM images in plan view geometry reveal a bimodal distribution of the particle size ($\bar{D} = 5.9\,\text{nm}$) while cross-sectional images are used to determine the orientation of the particles’ easy axes and of the underlying MgO seed crystal relative to the substrate normal. The texture spread of the [001] easy axes is roughly 3° and thus larger than the misalignment of the MgO crystals which can be ascribed to the nucleation of FePt growth at MgO step edges [1]. The magnetic analyses exhibit a high anisotropy field of $\mu_0 H_A = 9.2\,\text{T}$ and a weak dipolar coupling between the matrix-separated nanomagnets.

References: