SrRuO$_3$ is a metallic ferromagnet with $T_C \approx 163$ K. In the Ca$_{1-x}$Sr$_x$RuO$_3$ system, dilution of the strontium sublattice by calcium atoms leads to decrease of the Curie temperature. The ferromagnetic order disappears at a critical concentration of strontium $x_{cr} \approx 0.27$, at the quantum phase transition between the itinerant ferromagnet and a metallic paramagnet. All materials with $x < x_{cr}$ are paramagnetic.

Investigations of the magnetic, thermodynamic and transport properties of the materials with the strontium concentration varying from $x = 0.4$ (ferromagnet with $T_C \approx 20$ K) to $x = 0$ are reported. The ferromagnetic Ca$_{0.6}$Sr$_{0.4}$RuO$_3$ shows typical Landau Fermi-liquid behaviour with $C/T = const$ and $\rho \sim T^2$. For materials with $x < x_{cr}$ the magnetic susceptibility in the range of temperatures between about 10 K and 100 K behaves as $\chi \sim T^{1-\lambda}$. The heat capacity and the electrical resistivity demonstrate transitions from the Fermi-liquid at very low temperatures to the anomalous behaviour with $C/T \sim \log T$ and $\rho \sim T^{3/2}$ at higher temperatures. The Fermi-liquid behaviour is restored in the external magnetic field.