Really first principles calculations for CoF$_3$

R.J. Radwanski,1,2 D.M. Nalecz,1,2 M. Krupska,1,2 T. Piwowarczyk,1,2 and Z. Ropka1

1Center of Solid State Physics, S^3^t^t^ Filip 5,31-150 Krakow, Poland
2Institute of Physics, Pedagogical University, 30-084 Krakow, Poland

We have performed calculations of the low-energy electronic structure of CoF$_3$ from first principles, assuming the atomistic construction of matter and the electrostatic origin of the crystal-field splitting. CoF$_3$ is one of compounds with the trivalent Co ions but in contrary to nonmagnetic LaCoO$_3$ (Phys. Rev. B 67 (2003) 172401) exhibits antiferromagnetism below $T_N = 460$ K. In our atomic-like approach QUASST the d electrons of the Co$^{3+}$ ion in CoF$_3$ form the highly-correlated atomic-like system $3d^6$ in the high-spin state resulting from the octahedral subterm $^5T_{2g}$ (5D term) ground state. We have derived the low-energy electronic structure taking into account the trigonal distortion and the relativistic spin-orbit interaction. With the discrete electronic structure for $3d$ electron we have described the magnetic properties (the value of the magnetic moment and its direction) and temperature dependence of the specific heat together with the λ-type peak at T_N. We evaluated the orbital moment and the strength of spin interactions responsible for the formation of the magnetic state.