Electronic band structure of \(\text{La}_{2/3}\text{Pb}_{1/3}\text{Mn}_{2/3}(\text{Co,Fe,Ni})_{1/3}\text{O}_3 \)

M. Kowalik,\(^1\) W. Tokarz,\(^1\) R. Zalecki,\(^1\) and A. Kołodziejczyk\(^1\)

\(^1\)AGH University of Science and Technology, Department of Solid State Physics, Kraków, 30, Mickiewicza Str, 30059 Krakow

We present calculations of the band structure of half-metallic \(\text{La}_{2/3}\text{Pb}_{1/3}\text{Mn}_{2/3}(\text{Co,Fe,Ni})_{1/3}\text{O}_3 \) colossal magnetoresistance (CMR) manganites. The calculations are based on first-principles Density Functional Theory (DFT) with General Gradient Approximation GGA+U using Wien2K package \([1]\). Density of states (DOS) are obtained by the modified tetrahedron method. The calculated DOS of all investigated compounds for the spin up electrons show a gap close to Fermi energy \(E_F \). Doping of Fe and Co shifts this gap below \(E_F \) whilst Ni of above \(E_F \). For the spin down electrons \(E_F \) lies in energy gap in all cases. The calculated magnetic moments per formula unit of 2.7, 2.3 and 2 \(\mu_B \) respectively for Ni, Co and Fe doping are in good agreement with experiment \([2, 3]\).

References: