Magnetic field induced spin dynamics in KEr(MoO$_4$)$_2$

V. Tkáč,1 A. Orendáčová,1 R. Tarasenko,1 M. Orendáč,1 and A. Feher1

1Centre of Low Temperature Physics of P. J. Šafárik University and SAS, Park Angelínium 9, 040 00 Košice, Slovak Republic

Specific heat study identified KEr(MoO$_4$)$_2$ as a quasi-two-dimensional array of $S' = 1/2$ Ising chains with ferromagnetic intrachain interaction $|J_1|/k_B \approx 0.9$ K and antiferromagnetic interchain coupling $|J_2| \approx 0.2 |J_1|$ [1]. A phase transition to the magnetic ordered state has been observed at $T_c = 0.95$ K [1]. Analysis of the specific heat in the fields up to 1 T applied along the easy axis suggests that a one-dimensional Ising spin cluster model is a good approximation for this system [2]. We studied magnetic field and temperature dependence of ac susceptibility in the magnetic field up to 1 T and temperatures from 1.8 to 20 K. Our experiments indicated a presence of a slow magnetic relaxation. The magnetic field dependence of the intensity of the relaxation processes is discussed.

References:

This work was supported by the projects APVV 0132-11, VEGA 1/0143/13 and CFNTMVEP.