Half-metallic ferromagnetic alloys are indispensable for spintronic applications. There is a controversy between experiment and theory about the half-metallic nature of the Co$_2$FeSi Heusler alloy. Usually a generalized Slater-Pauling type (i.e. valency-controlled) behaviour of the average magnetization (theoretically $6 \mu_B$/f.u.) is considered as a conclusive proof. In the present study SQUID magnetic and $^{57}$Fe Mössbauer measurements were performed to clarify the situation. Bulk Co$_{2-x}$Fe$_x$Al$_1$, Co$_{1.9}$Fe$_{1.1}$Al$_{1-x}$Si$_x$, Co$_2$Fe$_{0.9}$TM$_{0.1}$Si (TM=Ti,V,Cr,Mn,Co,Ni,Cu), Co$_{2-y}$Fe$_{1+y}$Al and Co$_{2Fe_{1\pm y}Si_{1\mp y}}$ samples were prepared by induction melting. The Co$_{2-x}$Fe$_x$Si$_x$ shows L2$_1$ crystal structure only for $x \geq 0.4$, between $x=0$ and 0.3 it has A2 structure (Fe–Al, Si disorder). The average magnetization of these alloys does not follow the expected Slater-Pauling trend (on the Si side saturation is observed around $5.75 \mu_B$/f.u.) and similar deviation is observed for the replacement of Fe by TM atom. The effect of the antisite disorder (Fe-Si) on the magnetization and Fe hyperfine parameters was determined and significant decrease in the Co magnetic moment for excess Si neighbourhood is extrapolated. The formerly reported large $\approx 6 \mu_B$/f.u. magnetization for Co$_2$FeSi was observed only in samples having Fe excess and Si deficiency.