X-ray diffraction, Mössbauer spectroscopy, and magnetoelectric effect studies of multiferroic Bi$_5$Ti$_3$FeO$_{15}$ ceramics

T. Pikula,1 P. Guzdek,2 J. Dzik,3 A. Lisinska-Czekaj,3 and E. Jartych1

1Lublin University of Technology, Institute of Electronics and Information Technology, Lublin, Poland
2Institute of Electron Technology, Kraków, Poland
3University of Silesia, Institute of Materials Science, Sosnowiec, Poland

In this work multiferroic Bi$_5$Ti$_3$FeO$_{15}$ Aurivillius compound was prepared by the standard ceramic route and investigated using X-ray diffraction, Mössbauer spectroscopy, and magnetoelectric effect measurements. As it was proved by XRD studies a single-phased Bi$_5$Ti$_3$FeO$_{15}$ compound was obtained. Mössbauer studies revealed paramagnetic character of the compound at room temperature. Magnetoelectric measurements were carried out using lock-in dynamic method. The sample was placed into DC magnetic field with superimposed AC field. The value of magnetoelectric coupling factor α_{ME} monotonically increases with increasing frequency of AC magnetic field and saturates above 7 kHz reaching maximal value $\alpha_{ME} = 10.7 \text{ mV} \cdot \text{cm}^{-1} \cdot \text{Oe}^{-1}$. Additional magnetoelectric studies were carried out after initial electric polarization of the sample. The maximal value of the magnetoelectric factor $\alpha_{ME} = 20.7 \text{ mV} \cdot \text{cm}^{-1} \cdot \text{Oe}^{-1}$ was found being almost two times bigger than in the case without the initial polarization.