Critical Exponents of Dilute Ferromagnetic Insulator Ga$_{1-x}$Mn$_x$N

S. Stefanowicz,1 G. Kunert,2 W. Stefanowicz,1 D. Hommel,2 T. Dietl,1,3,4 and M. Sawicki1

1Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
2Institute of Solid State Physics, University of Bremen, Germany
3Institute of Theoretical Physics, University of Warsaw, Poland
4WPI-AIMR, Tohoku University, Sendai, Japan

Insulating ferromagnet (Ga,Mn)N brings a new paradigm into the semiconductor family. It is therefore important to comprehensively characterize its magnetic ground state. To this end we analyze the critical exponents β and γ for MBE grown layers with $0.04 < x < 0.10$ [1] and superlattice structures Ga$_{1-x}$Mn$_x$N/GaN:Mg. In all samples the critical behavior shows strong deviations from the magnetically clean case ($x = 1$): an apparent breakdown of the Harris criterion, a nonmonotonic crossover in the values of the γ_{eff} between the high temperature and critical regimes, and a smearing of the critical region by macroscopic inhomogeneities in the spin distribution.

References:

This work is supported by Polish NSC grants (DEC-2012/07/N/ST3/03146, DEC-2011/02/A/ST3/00125, DEC-2013/09/B/ST3/04175)