Induced anisotropy and domain structure in field-annealed Co-rich nanocrystalline ribbons

Branislav Kunca,1 Jozef Marcin,1 Jozef Kováč,1 Peter Švec,2 and Ivan Škovránek1

1Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia

2Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 842 28 Bratislava, Slovakia

In this work, a controllable field-induced magnetic anisotropy is produced in series of \((\text{Co}_{1-x}\text{Fe}_x)_{81}\text{Nb}_{7}\text{B}_{12}\) (\(x=0, 0.05\) and 0.1) alloys with different amount of crystalline phase. We show that nanocrystallization of the parent amorphous melt-spun ribbons in a longitudinal (LF) or transverse (TF) magnetic field with the magnitude 640 kAm\(^{-1}\) is very powerful tool to tailor the shape of the hysteresis loops and to control the domain structure of these materials. Heat treatment under LF-conditions results in squared hysteresis loops, which are accompanied by an appreciable reduction of the coercivity as compared to zero-field annealed samples. Sheared loops with good field linearity were achieved for all investigated alloys after TF-annealing. A marked response of the functional properties of these alloys to thermal processing in external magnetic field can be utilized in their better adaptation to potential applications.