Effects of Fe substitution for isoelectronic Ru on the magnetic and transport properties of CeRu$_2$Al$_{10}$

P. Peratheepan1,2 and A.M. Strydom2

1Department of Physics, Eastern University, Chenkalady, Sri Lanka
2Physics Department, University of Johannesburg, Auckland Park, South Africa

We have investigated the effects of magnetic Fe ion substitution in Ce(Ru$_{1-x}$Fe$_x$)$_2$Al$_{10}$ on the magnetic and transport properties, when the Kondo insulator CeRu$_2$Al$_{10}$ with anomalous antiferromagnetic order at $T_N = 27$ K [1] is fully transformed into the archetypal non-ordered Kondo insulator CeFe$_2$Al$_{10}$ [2]. The characteristic Kondo temperature T_K is determined from the magnetic susceptibility, and demonstrates a linear dependence on Fe concentration between 0.6 and 1. With increasing x, the positive maximum in the thermoelectric power just below T_N enhances gradually and reaches up to ~ 80 μV/K (at $T = 40$ K) for $x = 0.8$, which is remarkably as high as ~ 4 and ~ 1.5 times the corresponding values in CeRu$_2$Al$_{10}$ and CeFe$_2$Al$_{10}$ respectively. The magnitude of the lattice thermal conductivity is found to be nearly independent of x, while the electronic thermal conductivity on the other hand decreases by an order of magnitude when x increases from 0 to 0.8. We discuss our results in terms of the extreme electronic sensitive nature between CeRu$_2$Al$_{10}$ and CeFe$_2$Al$_{10}$.

References: