High temperature dielectric anomaly induced by external magnetic field on highly strained epitaxial Bi(Fe$_{0.5}$Mn$_{0.5}$)O$_3$ thin films

L.E. Coy,1,2 J. Ventura,2 L. Rodriguez,2 H. Glowinski,3 K. Zaleski,1 C. Ferrater,2 M.C. Polo,2 J. Dubowik,3 and M. Varela2

1NanoBioMedical, Adam Mickiewicz University - Poznań, Poland
2Dept. Física Aplicada i Òptica. Universitat de Barcelona - Barcelona, Spain
3Institute of Molecular Physics, Polish Academy of Sciences, - Poznan, Poland

We report on the single phase stabilization of Bi(Fe$_{0.5}$Mn$_{0.5}$)O$_3$ (BFMO) perovskite thin films deposited on SrTiO$_3$(001)-Nb(0.5%) by pulsed laser deposition. Temperature dependent impedance spectroscopy, SQUID magnetometer and VNA-FMR measurements were used to determine their dielectric and magnetic properties as a function of epitaxial strain and crystal texture. Magnetic measurements show evidence of magnetic ordering on the films with an estimated magnetic transition at \approx560K, feature not observed in bulk. The small magnetization of 0.4 μB/f.u. at room temperature exceeds the theoretical 0.2 μB/f.u. for ferrimagnetism, thus suggesting the influence of spin canting effect. Finally the magneto-electric coupling is discussed as a result of the dielectric measurements performed with and without magnetic field. A large dielectric anomaly is observed at \approx440K under a magnetic field suggesting large magneto-electric coupling well above room temperature.