The substitution of Pd for Ru in URu$_{1-x}$Pd$_x$Ge causes a dramatic change in their magnetic ground properties; from non-magnetic ($x < 0.3$), non-Fermi liquid ($x \sim 0.3$), through antiferromagnetic ($x = 0.35 - 0.8$) to complex magnetic state with two successive magnetic phase transitions in $x = 0.9$ and 1. In this contribution, we report thermoelectric power (S) and thermal conductivity (κ) measured in the temperature range 1.9 - 300 K. It is found that S of compositions $0.1 \leq x \leq 0.7$ is negative over the whole temperature range studied and shows negative minimum around 200 K. We interpret the anomaly at high temperatures as due to the Kondo effect. The low-temperature data of the non-Fermi liquid $x = 0.3$ alloy can be well described by a power law $-0.17T^{0.62}$. In contrast to nonmagnetic and antiferromagnetic alloys, the $x = 0.8 - 0.9$ exhibit positive $S(T)$ dependencies. For these compositions, we found also broad maximum nearby their magnetic phase transitions, presumably associated with the magnon drag. $\kappa(T)$ of the studied solid solutions increases almost linearly with increasing temperature, expecting for dominated electronic contribution.